Clustering with openMosix

Maurizio Davini
Department of Physics
INFN Pisa
(maurizio.davini@df.unipi.it)

Introduction

- Linux Clusters in Pisa
- Why openMosix ?
- What is openMosix?
 - Single-System Image
 - Preemptive Process Migration
 - The openMosix File System (MFS)
- The future

Linux Clusters in Pisa

Linux Clusters in Pisa(1)

- Anubis cluster
- 13 SuperMicro 6010H Dual PIII 1Ghz,1GB RAM,18 SCSI disk
- RedHat 7.2

-04-2002 HepiX 2002

Linux Clusters in Pisa(2)

- Seth Cluster
- 27 Appro 1124 Dual AMD Athlon MP 1800+,1GB RAM,18GB SCSI disk
- RedHat 7.2
- Ganglia monitor

The cluster applications

- Anubis cluster :QCD simulations full time
- Seth Cluster: QCD simulations, Nuclear Physics Simulations, Quantum Chemistry Applications (Gaussian...), Plasma Physics Simulation, Virgo Data Analysis

The openMosix Project history

- Born early 80s on PDP-11/70. One full PDP and disk-less PDP, therefore process migration idea.
- First implementation on BSD/pdp as MS.c thesis.
- VAX 11/780 implementation (different word size, different memory architecture)
- Motorola / VME bus implementation as Ph.D. thesis in 1993 for under contract from IDF (Israeli Defence Forces)
- 1994 BSDi version
- GNU and Linux since 1997
- Contributed dozens of patches to the standard Linux kernel
- Split Mosix / openMosix November 2001

What is openMOSIX (today version 1.5.4)

- Linux kernel extension (2.4.17) for clustering
- Single System Image like an SMP, for:
 - No need to modify applications
 - Adaptive resource management to dynamic load characteristics (CPU intensive, RAM intensive, I/O etc.)
 - Linear scalability (unlike SMP)

Single System Image Cluster

- Users can start from any node in the cluster, or sysadmin setups a few nodes as ''login'' nodes
- use round-robin DNS: "hpc.qlusters" with many IPs assigned to same name
- Each process has a Home-Node
 - -Migrated processes always seem to run at the home node,
 - e.g., "ps" show all your processes, even if they run elsewhere

A two level technology

- 1. Information gathering and dissemination
 - Support scalable configurations by probabilistic dissemination algorithms
 - Same overhead for 16 nodes or 2056 nodes
- 2. Pre-emptive process migration that can migrate any process, anywhere, anytime transparently
 - Supervised by adaptive algorithms that respond to global resource availability
 - Transparent to applications, no change to user interface

Level 1: Information gathering and dissemination

- Each unit of time (1 second) each node gathers and disseminates information about:
 - CPU(s) speed, load and utilization
 - Free memory
 - Free proc-table/file-table slots
- Info sent to a randomly selected node
 - -Scalable more nodes better scattering

Level 2: Process migration by adaptive resource management algorithms

- Load balancing: reduce variance between pairs of nodes to improve the overall performance
- Memory ushering: migrate processes from a node that nearly exhausted its free memory, to prevent paging
- Parallel File I/O: bring the process to the file-server, direct file I/O from migrated processes

Performance of process migration

- CPU: Pentium III 400 MHz
- LAN: Fast-Ethernet
- For reference: remote system call = 300microsec
- Times:
 - Initiation time = 1740microsec (less than 6 system calls)
 - Migration time = 351microsec per 4KB pæge
- Migration speed: 10.1 MB/Sec = 88.8 Mb/Sec

Process migration (MOSIX) vs. static allocation (PVM/MPI)

Fixed number of processes per node

Random process size with average 8MB

Note the performance (um)scalability!

Migration - Splitting the Linux process

- System context (environment) site dependent-"home" confined
- Connected by an exclusive link for both synchronous (system calls) and asynchronous (signals, MOSIX events)
- Process context (code, stack, data) site independent may migrate

The Mosix FileSystem

The MOSIX File System (MFS)

- Not a 'Real Filesystem' but a /proc like filesystem
- Provides a unified view of all files and all mounted FSs on all the nodes of a MOSIX cluster as if they were within a single file system
- Makes all directories and regular files throughout an openMOSIX cluster available from all the nodes
- Provides cache consistency as files viewed from different nodes by maintaining one cache at the server node
- Allows parallel file access by proper distribution of files (each process migrate to the node which has its files)

The MFS File System Namespace

Direct File System Access (DFSA)

- I/O access through the home node incurs high overhead
- Direct File System Access (DFSA) compliant file systems allow processes to perform file operations (directly) in the current node not via the home node
- Available operations: all common file-system and I/O system-calls on conforming file systems
- Conforming FS: GFS, openMOSIX File System (MFS), Lustre, GPFS and PVFS in the future

DFSA Requirements

- The FS (and symbolic-links) are identically mounted on the same-named mount-points
- File consistency: when an operation is completed in one node, any subsequent operation on any other node see the results of that operation
 - -Required because an openMOSIX process may perform consecutive syscalls from different nodes
 - -Time-stamp consistency: if file A is modified after B, A must have a timestamp S B's timestamp

Global File System (GFS) with DFSA

- Provides local caching and cache consistency over the cluster using a unique locking mechanism
- Provides direct access from any node to any storage entity (via Fiber-channel)
- Latest: GFS now includes support for DFSA
- GFS + process migration combine the advantages of load-balancing with direct disk access from any node for parallel file operations
- Problem with License (SPL)

Postmark (heavy FS load) client-server performance

Access Method	Data Transfer Block Size						
	64B	512B	1KB	2KB	4KB	8KB	16KB
Local (in the server)	102.6	102.1	100.0	102.2	100.2	100.2	101.0
MFS with DFSA	104.8	104.0	103.9	104.1	104.9	105.5	104.4
NFSv3	184.3	169.1	158.0	161.3	156.0	159.5	157.5
MFS without DFSA	1711.0	382.1	277.2	202.9	153.3	136.1	124.5

The openMosix API

Kernel 2.4. API and Implementation

- No new system-calls
- Everything done through /proc

```
/proc/hpc
/proc/hpc/admin Administration
/proc/hpc/info Cluster-wide information
/proc/hpc/nodes/nnn/ Per-node information
/proc/hpc/remote/pppp/ Remote proc. information
```

18-04-2002

Impact on the kernel

- MOSIX for the 2.2.19 kernel:
 - 80 new files (40,000 lines)
 - 109 modified files (7,000 lines changed/added)
 - About 3,000 lines are load-balancing algorithms
- openMOSIX for Linux 2.4.17
 - 47 new files (38,500 lines)
 - 126 kernel files modified (5,200 lines changed/added)
 - 48 user-level files (12,000 lines)

Some Tools

- Some ancillary tools
 - Kernel debugger for 2.2. and 2.4
 - Kernel profiler
 - Parallel make (all exec() become mexec())
 - openMosix pvm
 - openMosix mm5
 - openMosix HMMER
 - openMosix Mathematica

Cluster Installation with OpenMosix

The openMosix Web Site

SourceForge download page

Cluster Installation

- Various installation options:
 - 1. K12LTSP (www.k12ltsp.org)
 - 2. ClumpOs
 - 3. Debian distribution already includes openMosix
 - 4. Install RedHat 7.2 and download openMosix RPMS from sourceforge.net
 - 1. Edit /etc/mosix.map
 - 2. Reboot and ...that's all

Cluster Administration (1)

- UserLand tools for openMosix
 - Mosctl for node administration
 - Mosrun
 - Migrate
 - **—**
- Use 'mps' & 'mtop' for more complete process status information

openMosix tuning

- 14 parameters to modify openMosix behaviour (/proc/openMosix/admin/overheads)
- openMosix provides automated configuration and tuning tools
- Run *prep_tune* on a node and *tune_kernel* on another and cat the result in /proc/openMosix/admin/overheads

Cluster Monitoring

- Cluster monitor 'mosmon'(or 'qtop')
 - Displays load, speed, utilization and memory information across the cluster.
 - Uses the /proc/hpc/info interface for the retrieving information
- Mosixview with X GUI

Mosixview

- Developed by Mathias Rechemburg
- www.mosixview.cc (and its mirror)

Applications

Application Fields

- Scalable storage area cluster (SAN + Cluster) for parallel file access
 - Scalable transaction processing systems
- Scalable web servers: assign new incoming requests to the least loaded node
 - Scalable to any number of nodes by IP rotation
 - Higher availability
- Misc. applications parallel make

HPC Applications

Demanding applications:

- Protein classification
- Molecular dynamics
- Weather forecasting (MM5)
- Computational fluid dynamics
- Car crash numerical simulations (parallel Autodyn)
- Military applications

Example: Parallel Make

- Assign the next file to the least loaded node
- A cluster of 52 4-way
 550MHz Xeon nodes
 - Runs over a 40 builds of entire code of SAP R/3 (4.7 million lines of code) concurrently
- Got much better performance vs. LSF cluster for less cost in computing nodes

People behind openMosix

- Copyright for openMosix, Moshe Bar
- Barak and Moshe Bar were co-project managers of Mosix until Nov 2001
- Team Members
 - Danny Getz (migration)
 - Avraham Ben Yehudah (MFS and 2.5.x)
 - David Santo Orcero (user-space utilities)
 - Michael Farnbach (extern. Patch matching, ie XFS, JFS etc.)
 - Many others, including help from Ingo Molnar, Alan Cox,
 Andrea Arcangeli and Rik van Riel

Present and Future of openMosix

Current Projects (1)

- Migrating sockets
- Network RAM
- Distributed Shared Memory
- Checkpoint / Restart
- Queue Manager / Scheduler

Future Plans

- Inclusion in Linux 2.6
- Re-writing MFS
- Increase developers to 20-30

So....

- openMosix is today still the most advanced HPC clustering option
- A file system like NFS is not really an option in a cluster, MFS, pvfs, GPFS(perhaps) and GFS (...) are.
- openMosix is much more open than the predecessor
- Over 300 installations already switched to openMosix (some classified)
 - University of Pisa
 - STM
 - Intel
 - INFN Napoli
 - SISSA
 - Installation on 1400 nodes (multiprocessor) in Japan

The future

Clusters in Pisa

- Amon cluster
- 5 dual AMD Athlon
 1900+, 1GB RAM,18
 GB scsi disk Evolocity
 Cluster
- RedHat 7.2
- Donated by AMD

Cluster Application

- Amon Cluster: target to 'industry world'
 - Automotive (StarCD, Nastran, Fluent..)
 - Databases

New machines to test...

- SuperMicro 6022P (2 2.2Xeon 8Gb RAM 1Gb eth+ 1 100Mb eth)
- New Appro Chassis for AMD Athlon 2000/2100+ MP
- Myrinet and Dolphin networks

Qlusters OS

The new frontier

The new QlusterOS

- Commercial Product
- Release 1.0 announcement of Friday 04-19 at Futurshow in Bologna
- First Installation in Pisa (this weekend)
- First sales to Italy
- Partership with IBM,RedHat,Compaq,Intel.

Qlusters OS features (1)

- Based in part on openMosix technology
- Migrating sockets
- Network RAM already implemented
- Cluster parallel Installer,
- Cluster Configurator,
- Qsense (automatic detection of nodes no-more /etc/mosix.map)
- Monitor (written in Flash),
- Queue Manager ,Launcher, Scheduler
- Job Description Language in XML

Qlusters OS features (2)

- New Load Balancer
- Threaded applications migration
- Linux kernel 2.4.18 with (VM by A.Arcangeli integrated with Reverve Mapping by R.V.Ryel)
- Over 100 patches (RedHat Quality)
- Kernel latency reduced by 65% due to Robert Love latest pre-emption patch

Qlusters OS features (3)

- Support for migration on Myrinet and Dolphin networks
- Integration with GFS completed
- Integration with AFS planned
- IBM xSeries NUMA support
- DSM in a few months

Qluster Os features (3)

• grid with multiplatform consideration (recompiles when transferring on a cluster of different architecture)

The Monitor

QlusterOS Monitor

Info on Qlusters OS

- Visit the Web site www.qlusters.com
- Ask Moshe Bar (moshe@moelabs.com)